
  

Expanding the Role of Finite State Machine  
Technology in Open Architecture Control 

 
J.L. Michaloski, F.M. Proctor, and W. G. Rippey 
National Institute of Standards and Technology 

 Gaithersburg, MD, USA 
 

S.R. Kolla 
Department of Technology Systems 

Bowling Green State University 
Bowling Green, Ohio USA 

 
ABSTRACT 
Modern machine control systems rely heavily on software to achieve system functionality. Until recently, 
control software’s primary purpose was to provide logic and sequencing of machine execution. With 
computer hardware now providing power and memory to spare, control software is broadening its horizon 
from a focus on execution control to multiple phases within a control systems lifetime, such as design, 
testing, and maintenance. This paper reviews an object-oriented Finite State Machine (FSM) framework 
developed at National Institute of Standards and Technology (NIST) that exploits this potential and expands 
the software utility and functionality of machine control logic. The public domain FSM framework handles 
additional control requirements such as reusability, extensibility, modularity, testing, diagnostic 
troubleshooting, reporting, and maintenance. Please send any comments or questions by e-mail to: 
john.michaloski@nist.gov. 

 
KEYWORDS: control, Finite State Machine,  open architecture   
 
 

1 INTRODUCTION 
Sensor-based motion controllers in manufacturing 
applications rely more and more on software to achieve 
system functionality. From a behavioral standpoint, the 
control logic provides the means by which certain actions 
are taken in response to different situations.  Control logic 
is predicated on the fact that controller behavior must 
operate safely in an unpredictable environment where 
components or communications can fail at random.  In 
this realm, control systems fall under the domain of state 
machines, in which digital and analog devices and 
sensors interact over time and incorporate both 
feedforward planning and feedback error compensation. 
Examples of these systems abound in manufacturing 
such as Computer Numerical Control (CNC) machines, 
robots, and Program Logic Controllers (PLC). In this 
paper, we focus on improving the reuse and expanding 
the role of Finite State Machines (FSM) in machine 
control. 
As part of our work at National Institute of Standards and 
Technology (NIST),  a General Motion Control (GMC) 
Testbed has been developed with one goal being to 
validate the Open Modular Architecture Controller 
(OMAC) Application Programming Interface (API) 
specification for reconfigurable, plug-and-play open-
architecture controllers [10]. Within the OMAC API 
specification, the finite state machine model was 
determined to be sufficiently robust at modeling control 
logic, while at the same time conducive to best 
programming practices. FSM representation is a rigorous 
approach to modeling the machine control logic and can 

incorporate measures and tests of correctness beyond 
testing as well as provide for flexible reuse and 
reconfiguration [2], [12], [13].  For this reason, FSM 
control logic is pervasive throughout the OMAC API. FSM 
are especially appealing to the manufacturing industry as 
their use can contribute to better error traceability, faster 
diagnostic troubleshooting and easier maintenance [1]. 
The better diagnostic capability cannot be overstated as 
this has been considered the number one challenge for 
manufacturing systems [9].    
In this paper, we look at the potential to expand the 
software utility and functionality FSM within machine 
control. First, we explore the normal requirements and 
special considerations for modeling machine control in a 
FSM framework.  Then we look at FSM design and 
implementation reuse as a means to provide a consistent 
control methodology as well as offer a flexible way to 
handle extensions, modifications and reconfiguration. 
Next, we look at the policy mechanism to reuse state logic 
under different FSM methodologies. Finally, we 
demonstrate the expanded role of FSM in dynamic timing 
and report generation to provide improved testing, 
diagnostics and comprehension. The paper includes 
commentary on the importance of various FSM modeling 
aspects within the GMC testbed. 
 
2 FSM CONTROL MODEL 
A FSM models a machine controller as being in one of a 
finite set of the possible states, known as the state-space, 
at any given time. In order to handle the FSM logic within 

drussell
Proceedings of the 2nd CIRP International Conference on Reconfigurable Manufacturing, 
Ann Arbor, MI, August 20 - 21, 2003.



  

our GMC testbed, we felt that programming of control 
logic that relies on embedding control logic through 
if/then/else statements fails to leverage software 
techniques such as inheritance and aggregation. We 
considered using commercial Computer Aided Software 
Engineering visual programming environments that 
feature diagrams and state charts, but found them to be 
an all-or-none type of proposition and not conducive to 
our validation effort. We experimented with some open-
source FSM code generators [4], [7], [11] but 
programming changes were hard to tie back into the initial 
FSM model. Instead, we developed a FSM framework 
following an “abstract factory” pattern integrated in C++ 
and Java.  
We incorporated numerous programming capabilities you 
would expect of a FSM framework. The framework 
contains related class definitions for states, events, 
conditions, state transitions and actions necessary in the 
building of an abstract FSM. A FSM is programmed by 
factoring gross levels of behavior into states, identifying 
events, and then mapping the events into state 
transitions.   Within the abstract FSM, the ability to nest 
FSMs into a hierarchical state machine is available. An 
abstract FSM can refine logic based on specific 
conditions, timeouts, and event triggers while in a given 
state. An abstract FSM can provide a mechanism for 
outside observers to monitor the FSM behavior in 
accordance with the “Observer Pattern”  [3]. 
Overall, the FSM framework provides features found in 
the Unified Modeling Language (UML) statechart notation 
[5] with some extra features and refinements added to 
account for machine control. Machine control depends on 
periodic-updating behavior that can be handled differently 
based on the underlying state machine models and 
requires special consideration. In general, Mealy machine 
associate behavior with state transitions and Moore 
machine associates behavior with states. The FSM 
framework provides a model that is a combination of the 
Moore and Mealy models – actions occur at state 
transitions and periodically when in a given state for an 
extended amount of time. To satisfy control applications 
needs, a system must respond to events, such as 
externally generated commands, and then execute some 
action, following the Mealy model. Yet a control system 
must periodically update itself, and by inference its FSM, 
to monitor its state. Adopting the Unified Modeling 
Language terminology, our framework provides a class to 
activity model behavior associated while in a state, and a 
class to model action behavior associated with a state 
transition. 

The handling of within-state updates, as opposed to state 
transition updates, is another matter affecting FSM 
modeling. In the Mealy model, periodic updates of the 
FSM will require a separate event to trigger a self-
transition and associated action within a state. In the 
Moore model, each state executes an activity associated 
with the state to service the periodic update. As is evident, 
either model can handle the FSM update, but there is a 
requirement to support the UML State Change diagrams, 
which allow optional entry action to be executed upon 
entering a state and an optional exit action to be executed 
upon leaving a state.  Thus, in the Mealy model, the self-
state transition is actually leaving and reentering the state; 
consequently executing exit and entry actions. By 
comparison, the Moore model executes only the activity 
associated within the state.   Within the GMC, the FSM 
framework uses the Moore activity modeling for within-
state updates, which corresponds to the “do” internal state 
event of the UML state chart notation.  
 
3 REUSE 
The object-oriented FSM framework encourages reuse 
because of the use of abstraction and encapsulation of 
control logic. The reuse of FSM within the GMC helped to 
provide a consistent design methodology to reduce 
system development time and follow-on training time.  
Inheritance, composition or delegation provide alternative 
strategies for reusing abstract FSM.   
Class reuse through inheritance defines new subclasses 
derived from one or more super-classes. The subclass 
inherits all methods and instance variables of its super-
classes. One can overload inherited methods in the 
subclass and add new methods and instances variables. 
Within the FSM framework, class reuse allows sharing as 
well as modification or reconfiguration to meet particular 
control requirements.  Since class inheritance defines a 
relationship at compile-time, a derived class cannot 
change its base class dynamically during program 
execution. Moreover, modifications to the base class 
automatically propagate to the subclass, thus 
complicating software maintenance. Within the GMC, we 
did not find static class inheritance to be a problem as the 
OMAC API control logic was relatively stable. 
By comparison, reuse through the delegation hands logic 
over to another object. The delegation pattern establishes 
the relationship between objects where one object 
forwards certain method calls to another object, called its 
delegate.  The idea in the delegation pattern is to create 
the FSM object that will handle the all required control 

updateFSM

External Event

Internal Event

FSM Client
Event Generator
IO Sensor
User-Interface directive
Client command

FSM Server
Event Queue

H
H

H

FSM Updater
Updater Thread
Timer
OS Thread Slice

Figure 1. FSM Architecture 



  

logic thus limiting any logic changes to one object. 
Delegation is useful for the dynamic change of object 
relationships. Delegation enables the encapsulation of 
certain functionality in another object and allows code to 
be loosely coupled, a positive in software maintenance. 
One advantage of delegation is run-time flexibility – 
changing the delegate is easier at run-time.  Delegation 
can be a powerful reuse technique, but unlike inheritance 
does not facilitate dynamic polymorphism so it places an 
onus on the programmer to code all the delegation 
methods. 
In building the GMC testbed, the reuse of a inherited FSM 
classes reduced component testing and was quite simple 
to do in the FSM framework. The delegation of FSM logic 
was attempted but required extensive recoding of source 
code in C++ so that it was rarely used. Instead, the use of 
different setup methods to describe state logic was found 
to be more useful than delegation. Dynamic 
reconfiguration of FSM logic was still possible using 
inheritance by clearing and redefining state logic. We 
found that the inherited base FSM class offered a clean 
mechanism to establish sequencing of control logic by 
defining abstract or limited functionality event, state 
transition, and action/activity methods. The overriding of 
action/activity methods customized behavior for the 
component while the base FSM handled the sequencing 
of control logic in calling these methods. 
 

4 RECONFIGURATION 
Component-based development assembles systems from 
existing building blocks of code. Different programmers 
prefer different methodologies so the ability to integrate 
components in a flexible manner is crucial to component-
based development. For flexibility, a FSM should support 
numerous methodologies and allow reconfiguration to 
handle differing event, error, and execution procedures.  
In order to use FSM under different methodologies, the 
FSM framework contains a policy class to customize FSM 
behavior in a flexible manner. Of course, a default policy 
is loaded when an instance derived from abstract FSM 
class is constructed. Users can customize this policy or 
develop a separate policy for repeated use across many 
different abstract FSM classes. 
Interaction between events and the state logic is a major 
issue in control logic methodology. Figure 1 illustrates this 
interaction as a connection between an event producing 
FSM client and an event consuming FSM Server as 
modeled within the client/server paradigm. It is assumed 
that more than one client or more than one server could 
be connected to each other.  The relationship between 
events and the FSM can vary greatly depending on the 
system architecture and can differ regarding event 
generation, event transmission, event validity, and event 
handling. The fundamental architecture issue is in regard 
to event handling: events can be serviced immediately 
(i.e., synchronously), or can be queued and handled later 
(i.e., asynchronously). For an asynchronous architecture, 
a FSM Updater running in a separate thread is necessary 
to service events.  Another consideration is that in a 
synchronous event-driven FSM, we only perform actions 
when an event has occurred so there are no state-based 
periodic activities. Further architecture consideration must 
be given to error handling. Events without a 

corresponding state transition from the current state could 
be ignored or cause the FSM to fail. To achieve a reliable 
component framework, the FSM policy allows a variety of 
configuration in a standard way so that interoperability 
and plug-and-play of components is possible.  
The FSM policy provides control over how to handle FSM 
execution, whether the FSM is synchronous or 
asynchronous.  The FSM policy provides for options for 
either priority or standard FIFO queuing. Asynchronous 
options exist for automatic FSM update by a separate 
background thread on or by a timer for tighter update 
regulation.  The FSM policy determines whether to 
maintain timing statistics during the FSM operation and 
whether any error-conditions monitoring (such as 
timeouts) should be done if timing is performed. Under 
asynchronous execution, the FSM policy controls the 
thread execution period for timed or threaded updates. 
The FSM policy determines error handling for such 
situations as an invalid event for the FSM, state duplicate 
event matches, and invalid events in current state. 
In the GMC testbed, the FSM flexible error policy 
mechanism was helpful in that errors could be either 
strictly handled or more loosely handled, depending on 
the circumstances. This is especially true for dealing with 
the user-interface, as event errors, such as invalid events 
in a given state, which are not catastrophic, could be 
handled in a graceful manner. Because invalid events are 
so common when dealing with the user-interface, the FSM 
framework provides a canHandleEvent method so that 
the user-interface can determine if an event is  valid in the 
current state, (i.e., has a state transition for the event). 
This event handling method assumes synchronous event 
handling or an empty event queue, but this was not found 
to be a limiting constraint.  

5 REPORTING FACILITIES 
The FSM framework expands the role of FSM from control 
logic to include reporting facilities that can assist in 
system analysis, diagnostics and maintenance. The FSM 
framework can generate HTML or XML describing the 
state transitions of a given FSM. Further, the FSM can 
also generate HTML or XML describing the execution 
processing as summary timing statistics. This information 
is available for hard-copy documentation or for on-line 
during design- or run-time to improve comprehension as 
well as for tracking state transitions. 
The FSM framework generates state table documentation 
describing the FSM as  an alphabetized list by state of 
each internal and external state transition for the given 
state. Each table row contains the state name, the event 
triggering the state transition, any guard conditions for the 
event, the ending state, and the associated action/activity. 
The documentation will generate tables for all substate 
FSM as well.  The generated documentation corresponds 
directly to the actual control logic and is not generated 
from embedded comments or other programming artifacts 
that may not reflect the actual control logic. 
Software understanding is a prerequisite for system 
support tasks such as testing, maintaining, modifying and 
renovating. Typically, system support consumes over half 
the software engineering resources. Clearly the self-
documenting FSM feature can help in providing analysis 
for understanding system operation.  The availability of 
automated, source-code-generated, documentation is 



  

 

Figure 2. FSM Diagnostic Playback

especially useful, as experience in industry shows that 
even if documentation is available it may not be up-to-
date [8]. The on-the-spot report generation based on 
internal code is also more accurate than if generated by 
comment extraction tools. Self-documenting components 
is an especially critical aspect for reuse, as understanding 
how a component works is critical for proper systems 
integration.  
The FSM framework can generate an HTML or XML 
diagnostic documentation string that describes the FSM 
performance by state in table format. Table 1 shows the 
statistics for two FSM states RUN and STOPPED, that 
includes performance statistics for average duration, 
worst case duration, total duration, average processing 
time, worst case processing time, and total processing 
time. 
In the FSM timing report table, the duration statistic 
means how long was spent in a given state according to 
the wall clock. By wall clock, we mean that if 
we enter a state at 1:00PM and leave the state 
at 1:01PM, then the duration was 1 minute, 
irrespective of the fact that only 1 millisecond 
of processor time was required to enter, 
update, and leave the state. The average 
duration represents the average for the total 
wall clock time in a given state. The worst case 
duration gives the longest wall clock time spent 
in the state.  The total elapsed duration gives 
the total amount of wall clock time spent in the 
state. The average processing represents the 
average for the CPU processing time in a 
given state. The worst case processing gives 
the CPU longest the processor required in the 
state.  The total elapsed processing gives the 
total amount of CPU processing time spent in 
the state.  
Because timing is an automatic part of the 
FSM framework and available while running, 
timing statistics can allow easy analysis and 
evaluation of condition-based hardware 
maintenance. A standardized FSM within the 
packaging industry (PackML) has been 
adopted as a way access line performance 
metrics [6]. The PackML state model was 
easily modeled with the FSM framework, and 
the reporting facilities provide an easy way to 
provide performance metrics. 

6 DIAGNOSTICS AND MAINTENANCE  
The FSM framework integrates diagnostics capability into 
every abstract FSM class. The FSM incorporates a 
parameter table class to handle state variables in a textual 
“ini” format like string. The parameter table class creates a 
table of entries containing parameter name, parameter 
type, and an address for storing and retrieving data 
values.   The FSM reporting feature saves snapshots of 
data stored in the parameter table at each major state 
transition that can be dumped later if necessary.   The 
FSM also provides event and state breakpoints within the 
parameter table. These breakpoints can trigger an 
execution breakpoint whenever an event is received or a 
state is entered greatly augmenting the existing 
debugging environment. Policy flags are also stored as 
parameters to catch program logic errors by 
“breakpointing” at any deviation from the accepted FSM 
logic, such as unexpected events or invalid state 

FSM Processing (in seconds)  

State Average 
Duration 
 

Worst Case 
Duration 

Total 
Elapsed 
Duration  

Average 
Processing 
 

Worst Case 
Processing 

Total 
Processing 

RUN  11.151000 33.453000 63.703000 0.000000 0.204000 4.378000 

STOPPED  8.265667 24.797000 37.391000 0.000000 0.000000 0.000000 

Table 1. Timing Report Example 



  

transition.  

One benefit of using FSM framework within the NIST 
GMC testbed was the eased traceability of program logic. 
The GMC testbed integrated these features with 
sequencing buttons under a FSM display to allow forward 
and reverse playback to “reenact” errors.  Thus, hardware 
faults or other system errors can be easily pinpointed and 
the sequence of events leading to the error can be traced 
within the FSM. Figure 2 illustrates the NIST GMC testbed 
controller after an amp fault causes the 
followingPosition state to transition to a fault 
state. The arrow (added for this paper) shows the Amp 
Fault IO point as 1, indicating a fault.   

7 SUMMARY 
This paper described the public-domain, object-oriented, 
source-code FSM framework developed at NIST to 
validate the OMAC API. While the standard practice for 
coding a finite state machine is to use long conditional 
branches or while loops, the FSM framework uses a class 
factory pattern to encapsulate states, events, actions, 
transitions, and conditions necessary in the programming 
of machine control behavior. Unlike while loops or 
conditional branches, the FSM framework imposes 
structure on the code and makes its intent clearer.  
Encapsulating each state transition and action in a class 
elevates the idea of an execute state to full object status. 
Within the GMC testbed, the use of a FSM framework to 
develop common FSM provided a high degree reuse and 
reconfigurability when developing OMAC API 
components, which simplified coding and testing. In 
addition, the framework adds classes for policy, logical 
correctness, and parameter definitions to extend the 
framework. These additional facilities added to the life 
cycle control support by providing differing FSM 
methodology support especially for user-interface 
development; automated documentation generation; 
diagnostic playback for troubleshooting; reconfiguration of 
logic; and improved program correctness. 

REFERENCES 
[1] Birla, B., Yen, J., Skeries, F., and Berger, D., 1999, 

“Controls Software Requirements for Global 
Commonization at General Motors Corp.”, Control 
Engineering. 

[2] Brave, Y. and Heymann, M., 1991, “Control of 
Discrete Event Systems Modelled as Hierarchical 
State Machines,” Proc. of 30th IEEE Conf. Decision 
and Control, 1499-1504 

[3] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 
1994, “Design Patterns: Elements of Reusable 
Object-Oriented   Software,” Addison Wesley, 
Reading, MA. 

[4] Grail++,  http://www.csd.uwo.ca/research/grail/  
[5] Harel, D., 1987, “State charts: A Visual Formalism for 

Complex Systems,” Science of Computer 
Programming, 8, 231 - 274.   

[6] Kowal, J., 2003 “Best practices: implementing the 
PackML™ state model in Sequential Function Chart”, 
Packaging World. 

[7] Libero,  http://www.imatix.com/html/libero/ 

[8] Liu K., Alderson A. and Qureshi Z., 1999 , 
“Requirements Recovery from Legacy Systems by 
Analyzing and Modeling Behavior,” ICSM, 3-12.  

[9] NSF Workshop on Logic Control for Manufacturing 
Systems, 2000, University of Michigan, Ann Arbor, 
MI. 

[10] Open, Modular, Architecture Group (OMAC) User’s 
Group, http://www.omac.org 

[11] Ragel State Machine Compiler,  
http://www.essemage.com/ragel  

[12] Ramadge, P. J. and Wonham, W. M., 1987, “Modular 
Feedback Logic for Discrete Event Systems”', SIAM 
Journal of Control and Optimization.  

[13] Wang, S. and Shin, K.G., 2000, "Generic 
programming paradigm for open architecture 
controllers," WAC 2000/Seventh International 
Symposium on Manufacturing with Applications. 

 
 
 




